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Constructing implied volatility curves that are arbitrage-free is crucial for
producing option prices that are sensible. In this Note we explain how the risk
neutral density (RND) can be used to verify whether implied volatilities are
arbitrage-free. The main references are Carr and Madan [2] and Fengler [3].

1 The Implied Volatility Curve and the RND

1.1 Constructing Implied Volatility and the RND

The steps to constructing an implied volatility curve and extracting the RND
can be summarized as follows.

1. For a set of n strikes k;, collect a set of market call prices ¢;, all with the
same maturity. Extract the implied volatility v; from these call prices.
This produces a set of triples {(k;,v;, ¢;)}i ;-

2. Expand the range of strikes and increase the granularity to produce a set
of N strikes {Ki}?il, with increment dK. For example, if the market
strikes span from $20 to $60 in increments of $10, expand the range to
span $10 to $80 in increments of $0.05.

3. Select a curve-fitting method for the implied volatilities along the ex-
panded strikes {Kz}fil There are many choices for a volatility function,
including but not limited to

e Quadratic Deterministic Volatility Function (DVF).
e Stochastic Volatility Inspired Model (SVI).
e SABR Model.

e Interpolation. If you use this choice you will need to specify values
to extrapolate for the tails, such as flat extrapolation, for example.

Estimate the parameters (if necessary) of the chosen volatility function,
and fit the implied volatility V; to each expanded strike. With the fit-
ted volatility, obtain the fitted market price C; using the Black-Scholes
formula. This produces a set of N strike-price pairs { (X, Ci)}ij\il. The
sequence of the data we need is thus
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4. Use the result of Breeden and Litzenberger [1] that the value at a price
S* of the discounted risk neutral density fs,(St) is the second partial
derivative of the call price with respect to strike, evaluated at S*
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We use the set of pairs {(K;, Ci)}iil to obtain the RND at every strike
K;. This requires finite difference approximations. If we take central
differences, then we will have N —4 points, since the first partial derivatives
will be approximated by
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while the second partial derivatives (the discounted RND) will be approx-
imated by
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1.2 Checking for Arbitrage

We need to verify that the RND produces a volatility curve that is arbitrage-free.
Essentially, this means that the RND should be a true density, and that call
prices obtained by numerical integration of the RND should show no arbitrage.
There are two familes of tests:

1. Tests based on the RND.

2. Tests based on option strategies.

1.2.1 RND-Based Tests for Arbitrage

Tests based on the RND involve checking whether the RND is a true density
(that is does not take on negative values and that it integrates to unity), and
that call prices obtained by numerical integration of the RND free of arbitrage.
Hence, using the RND to test for arbitrage means that

e We should be able to recover the original market call prices ¢; by numerical
integration of the RND.

e The RND should not take on negative values and it should integrate to
unity.

e The RND should produce call prices that are decreasing monotonically in
strike. That is, since the call price C(K) with strike K is
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we must have that the first derivative is negative for any strike K3
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To verify this condition, at every market strike we take the finite differ-
ence approximation of g—g from Equation (2) to obtain the left-hand side,
we integrate the discounted RND to obtain the right-hand side, and we
compare the two resulting quantities.

e The RND should produce call prices that are convex. That is, for any
two strikes K1 < K> the first derivative must increase in strike
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To verify this condition we take our finite approximations in Equation (2)
to obtain the left-hand side of Equation (5), we integrate the discounted
RND to obtain the right-hand side, and we compare the two resulting
quantities.

1.2.2 Tests Based on Option Strategies

These tests involve checking that option strategies that employ market prices of
calls obtained with the fitted volatilities from Step 3 of Section 1.1, are sensible.
For simplicity we assume that the expanded strikes {Ki}fvzl are equally spaced.
In other words, dK; = K; — K;_1 = dK.

e Vertical call bull spreads. These spreads are long one call and short
another call with a higher strike. A bull spread with strikes K; 1 < K
has price C;_1 — C; > 0. The price Q; of (ﬁ) units of vertical call bull
spreads is therefore Q; = % It is easy to show that at expiry’',
when the stock price is St, the bull spread has value in [0, 1], that is,

0 < (S — Ki_1)" — (St — K;)"
- dK

<1.

Taking expectations under the risk neutral measure and discounting, we
obtain
Ci1—-C; < o'
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Hence, the value of the bull spread should lie in [0, e’TT] so that
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Indeed, when St < K;_1 we have Q; = 0, when K;_1 < St < K; we have Q; =
Sp—K;_ Ki—K;_
ﬁ < 1, and when Sp > K; we have Q; = ﬁ =1.



e Butterfly spreads. These spreads are long one call with strike strike
K;_4, short two calls with strike K;, and long one call with strike K;, .
A butterfly spread has price C;_1 —2C; + C;41. It can be shown that the
price BS; of (d%) units of a butterfly spread approaches the Dirac delta
function as dK — 0. Its price for dK > 0 is

Cic1 =20 4+ Cipa
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2 Illustration

We illustrate steps 1 through 7 above using a stock with spot price of $423.19
and when the risk-free rate is 1%.

1. We collect strikes k; and call prices ¢; on n = 22 call options, with maturity
2 weeks. We extract the implied volatility v; from each. The triples
{(ki, ci,v;)}i, are listed in Table 1.

Table 1. Market Strikes (k;), Call Prices (c;),
and Implied Volatility (v;)

k; Ci v; ks Ci ;
300 123.40 0.6842 410 21.08 0.4019
310 113.45 0.6566 420 14.92 0.3918
320 103.51 0.6197 430 9.93 0.3815
330  93.61 0.5928 440 6.42 0.3802
340 83.61 0.5311 450 3.62 0.3663
350 73.86 0.5205 460 2.06 0.3653
360 64.07 0.4838 470 1.22 0.3730
370 54.57 0.4669 480 0.62 0.3705
380 45.24 0.4420 490 0.39 0.3857
390 36.45 0.4267 500 0.17 0.3783
400 28.28 0.4120 510 0.13  0.4006

2. We expand the range of strikes from $250 to $600 in increments of dK =
$0.025, which produces N = 14,001 strikes.

3. We select the DVF, SVI, and SABR models, along with linear, spline, and
shape-preserving cubic interpolation. We obtain the following parameter
estimates.

e For the DVF we obtain
By = 3.0376, 3, = —0.01162, B, = 1.26475 x 107>,
e For the SVI model we obtain

a=—0.7096,b = 2.0331, p = —0.4654, m = —0.1699, o = 0.4711.



e For SABR we obtain

o = 7.8335,p = —0.2823, v = 2.6244.

The results are plotted in Figure 1. The models appear to provide a sim-
ilar fit to the market volatilities. The extrapolation, however, is different, as
expected.
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Figure 1. Market and Fitted Implied Volatilities

The call prices generated with these different volatility curves are plotted in
Figure 2. At first glance, it seems that the choice of volatility curve is irrelevant
since the call prices are all very close. We will see later that this is not the case,
and that these call prices produce risk neutral densities that are vastly different.
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Figure 2. Call Prices From the Fitted Volatilities

4. We apply Equations (2) and (3) and obtain the RND fg, on N —4 =
13,997 points. This appears in Figure 3. While the call prices in Figure
2 are very close, the risk neutral densities that are extracted from these
prices are vastly different. The densities from the DVF, SVI, and SABR
are reasonable, but the RND from splines is very jagged and takes on
negative values (these have been floored at -0.01 to make the figure more
presentable).
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Figure 3. Risk Neutral Densities from the Fitted Call Prices




2.1 Checking for Arbitrage
We verify that the RNDs in Figure 3 are arbitrage free. We first calculate the

area under the curve.

Table 2. Arbitrage Statistics for the RNDs

This appears in the first row of Table 2.

Statistic DVF SVI SABR  Linear Splines  Cubic

Area under RND 1.0002  0.9993 0.9995  0.9999 0.9999  0.9999

Call pricing errors (%)  2.8561 -0.4368 0.8095 -0.0985 -0.1023 -0.1008

Eqn (4) errors (%) -0.6758  0.0916 0.1196  2.2606 0.0503  0.0500

Eqn (5) errors (%) 0.0624  0.0611 0.0631 -88.1621 -3.0840 0.0736
% violation of En (6) 8.9 0 0 0 2.3 1.7
% violation of Eqn (7) 0 0 0 2.9 10.9 8.8

The table indicates that all methods produce RNDs that integrate close to
unity. We next verify whether we can recover the original call prices from each
of the RNDs. The prices appear in Table 3.

Table 3. Market Call Prices and Prices Recovered by RND

Strike  Market DVF SVI SABR Spline Linear Cubic
300 123.402 123.523 123.344 123.307 123.351 123.351 123.351
310 113.454 113.555 113.384 113.353 113.407 113.407 113.407
320 103.506 103.601 103.438 103.418 103.463 103.463 103.463
330 93.607 93.672 93.515 93.513 93.568 93.568 93.568
340 83.613 83.781 83.629 83.656 83.578 83.578 83.578
350 73.862 73.954 73.804 73.872 73.831 73.831 73.831
360 64.066 64.233 64.082 64.204 64.039 64.039 64.039
370 54.569 54.684 54.528 54.715 54.546 54.546 54.546
380 45.240 45.413 45.251 45.501 45.221 45.221 45.221
390 36.449 36.574 36.409 36.704 36.433 36.433 36.433
400 28.283 28.374 28.215 28.512 28.271 28.271 28.271
410 21.078 21.053 20.917 21.162 21.068 21.068 21.068
420 14.921 14.843 14.749 14.896 14.914 14.914 14.914
430 9.929 9.901 9.856 9.898 9.925 9.925 9.925
440 6.416 6.243 6.240 6.211 6.412 6.412 6.412
450 3.622 3.740 3.756 3.708 3.620 3.620 3.620
460 2.057 2.151 2.166 2.132 2.056 2.056 2.056
470 1.217 1.209 1.208 1.198 1.215 1.215 1.215
480 0.619 0.678 0.658 0.666 0.618 0.618 0.618
490 0.393 0.388 0.354 0.370 0.392 0.392 0.392
500 0.170 0.231 0.190 0.207 0.170 0.170 0.170
510 0.127 0.144 0.102 0.116 0.126 0.126 0.126

Clearly the models all recover the original market call prices adequately,
especially for calls that are not too deep out-of-the money (recall that the spot




price is $423.19). This is confirmed by the average percent errors between the
market call prices and the call prices produced by each of the implied volatility
models. These errors appear in the second row of Table 2 and are all less than
three percent in absolute value.

Next, we check the no-arbitrage condition that the first derivative of call
prices with respect to strike is negative, in accordance with Equation (4). We
evaluate the derivative at the market strikes, and present the results in Table 4
for the DVF, SVI, and SABR models, and in Table 5 for the splines, cubic, and
linear interpolated models. The slopes and areas from the tables are generally
comparable. The third row of Table 2 confirms that the average percentage
error between the slope and area is less than one percent in absolute value for
the DVF, SVI, SABR, and spline models, and just over two percent for the
linear interpolated model. The results confirm that call prices are decreasing
in strike. Note that since we are using central differences in Equation (2), the
first and last strikes K7 = 300 and K55 = 510 are excluded.

Table 4. Slope Checks for Arbitrage, Equation (4)
DVF SVI SABR

Strike  Slope Area Slope Area Slope Area
310  -0.996 -0.996 -0.996 -0.995 -0.995 -0.995
320 -0.994 -0.994 -0.994 -0.994 -0.993 -0.992
330 -0.991 -0.991 -0.991 -0.991 -0.989 -0.989
340  -0.986 -0.986 -0.987 -0.986 -0.983 -0.983
350  -0.978 -0.978 -0.979 -0.978 -0.974 -0.973
360 -0.965 -0.965 -0.966 -0.965 -0.960 -0.959
370  -0.943 -0.943 -0.944 -0.944 -0.938 -0.937
380 -0.908 -0.909 -0.910 -0.909 -0.904 -0.903
390 -0.855 -0.856 -0.856 -0.856 -0.854 -0.853
400  -0.780 -0.780 -0.779 -0.779 -0.782 -0.781
410  -0.680 -0.680 -0.677 -0.677 -0.685 -0.685
420  -0.559 -0.559 -0.555 -0.554 -0.566 -0.565
430  -0.429 -0.429 -0.425 -0.424 -0.434 -0.434
440  -0.304 -0.305 -0.302 -0.302 -0.306 -0.306
450  -0.200 -0.200 -0.199 -0.199 -0.199 -0.199
460 -0.122 -0.122 -0.123 -0.123 -0.121 -0.121
470  -0.070 -0.070 -0.072 -0.072 -0.070 -0.070
480  -0.038 -0.039 -0.041 -0.041 -0.039 -0.039
490 -0.020 -0.021 -0.022 -0.022 -0.022 -0.022
500  -0.011 -0.012 -0.012 -0.012 -0.012 -0.012

Slope: left-hand side of Equation (4)

Area: right-hand side of Equation (4)




Table 5. Slope Checks for Arbitrage, Equation (4)
Linear Spline Cubic

Strike  Slope Area Slope Area Slope Area
310 -0.994 -0.994 -0.996 -0.996 -0.995 -0.994
320 -0.994 -0.993 -0.991 -0.991 -0.993 -0.992
330 -0.988 -0.993 -0.996 -0.995 -0.991 -0.991
340  -1.000 -0.990 -0.991 -0.990 -0.984 -0.984
350 -0.968 -0.975 -0.972 -0.972 -0.971 -0.971
360 -0.976 -0.968 -0.972 -0.971 -0.966 -0.965
370  -0.937 -0.941 -0.938 -0.938 -0.941 -0.940
380 -0.918 -0.910 -0.914 -0.914 -0.909 -0.909
390 -0.852 -0.851 -0.849 -0.848 -0.851 -0.851
400 -0.Y79 -0.773 -0.775 -0.774 -0.772 -0.772
410 -0.671 -0.671 -0.667 -0.667 -0.671 -0.671
420  -0.559 -0.559 -0.565 -0.565 -0.559 -0.559
430 -0.439 -0.423 -0.417 -0417 -0.412 -0.412
440  -0.297 -0.316 -0.316 -0.316 -0.300 -0.300
450  -0.226 -0.210 -0.220 -0.220 -0.198 -0.197
460 -0.122 -0.114 -0.106 -0.106 -0.120 -0.120
470  -0.065 -0.072 -0.075 -0.075 -0.075 -0.075
480 -0.044 -0.036 -0.035 -0.035 -0.042 -0.042
490 -0.017 -0.024 -0.023 -0.023 -0.026 -0.027
500  -0.015 -0.010 -0.015 -0.015 -0.013 -0.013

Slope: left-hand side of Equation (4)

Area: right-hand side of Equation (4)

We check the convexity condition in Equation (5). We present the results
for the DVF, SVI, and SABR models for the market strikes in Table 6, and for
the interpolated models in Table 7.



Table 6. Arbitrage Check for Convexity, Equation (5)
Strikes DVF SVI SABR

Lower Upper Diff Area Diff Area Diff Area
310 320 0.0019 0.0019 0.0018 0.0018 0.0024 0.0024
320 330  0.0030 0.0030 0.0029 0.0029 0.0038 0.0037
330 340  0.0049 0.0049 0.0047 0.0047 0.0059 0.0059
340 350  0.0081 0.0081 0.0078 0.0078 0.0092 0.0092
350 360  0.0134 0.0134 0.0130 0.0130 0.0143 0.0143
360 370  0.0218 0.0218 0.0215 0.0215 0.0221 0.0221
370 380 0.0346 0.0346 0.0346 0.0346 0.0338 0.0338
380 390  0.0527 0.0527 0.0533 0.0533 0.0502 0.0502
390 400  0.0756 0.0756 0.0770 0.0770 0.0718 0.0718
400 410  0.1003 0.1003 0.1022 0.1021 0.0966 0.0966
410 420  0.1208 0.1208 0.1223 0.1222 0.1194 0.1193
420 430  0.1302 0.1302 0.1303 0.1302 0.1319 0.1319
430 440  0.1243 0.1243 0.1227 0.1227 0.1275 0.1275
440 450  0.1047 0.1046 0.1023 0.1022 0.1069 0.1068
450 460  0.0780 0.0779 0.0761 0.0760 0.0782 0.0782
460 470 0.0520 0.0519 0.0512 0.0511 0.0511 0.0511
470 480  0.0315 0.0315 0.0317 0.0317 0.0307 0.0307
480 490  0.0178 0.0177 0.0184 0.0184 0.0175 0.0175
490 500  0.0095 0.0095 0.0102 0.0102 0.0097 0.0097

Diff: left hand side of Equation (5)

Area: right hand side of Equation (5)

Table 6 indicates that the RND appear to satisfy the no-arbitrage require-
ment of Equation (5) for the DVF, SVI, and SABR models. In particular, the
left- and right-hand sides of Equation (5) are almost always equal up to 4 deci-
mal places, for every market strike. The last row of Table 2 indicates that the
average percentage error between the left- and right- hands sides is less than 10
basis points. Note that since we are using central differences, only 19 of the 22
market strikes are represented. The results of Equation (5) for the interpolated
models presented in Table 7.

10



Table 7. Arbitrage Check for Convexity, Equation (5)
Strikes Linear Splines Cubics

Lower Upper Diff Area Diff Area Diff Area
310 320 0.000 0.002 0.005 0.005 0.002 0.002
320 330 0.006 -0.001 -0.004 -0.004 0.002 0.001
330 340  -0.012 0.003 0.005 0.006 0.007 0.007
340 350 0.032 0.015 0.019 0.018 0.013 0.013
350 360 -0.008 0.007 0.001 0.001 0.005 0.006
360 370 0.039 0.027 0.034 0.033 0.025 0.025
370 380 0.019 0.031 0.024 0.024 0.031 0.0317
380 390 0.066  0.059 0.066 0.065 0.058 0.058
390 400 0.073 0.078 0.074 0.074 0.079 0.079
400 410 0.108 0.102 0.108 0.108 0.101 0.101
410 420 0.112 0.112 0.102 0.102 0.112 0.112
420 430 0.120 0.135 0.148 0.149 0.146 0.147
430 440 0.142 0.108 0.102 0.101 0.113 0.113
440 450 0.070  0.105 0.095 0.096 0.102 0.103
450 460 0.104 0.096 0.114 0.114 0.077 0.077
460 470 0.057 0.043 0.031 0.031 0.046 0.045
470 480 0.021 0.035 0.040 0.041 0.033 0.034
480 490 0.026 0.012 0.012 0.011 0.015 0.015
490 500 0.002 0.014 0.008 0.009 0.014 0.014

Diff: left-hand side of Equation (5)

Area: right-hand side of Equation (5)

The entries in Table 7 and the percentage error in the last row of Table 2
both illustrate that the linear and spline interpolated volatilities in general do
not satisfy the no-arbitrage condition. The areas and differences are not the
same, and the values take on negative values. The cubic interpolation does a
much better job.

Finally, for every set of call prices {Ci}fvzl generated by each of the RNDs,
we verify whether the vertical spreads @; € (0,1) in accordance with Equation
(6), and whether the butterfly spreads BS; > 0, in accordance with Equation
(7), are satisfied. The results of these tests appear in the last two rows of Table
2. They indicate only the SVI and SABR models produce call prices that pass
the tests for all strikes.

To resume, while the linear and spline interpolated volatilities appear at first
glance to provide an adequate model for a volatility curve, when the resulting
call prices are subjected to rigorous arbitrage checks, they fail. The interpolated
models all produce RNDs that take on negative values and the DVF model has
trouble satisfying Equation (6). The SVI and SABR models are therefore the
best choice of models for this set of data.
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3 Illustration Using Interpolation Only

In this section we illustrate graphically that linear interpolation is a very poor
choice of implied volatility function. Figure 5 presents fitted volatilities using
linear interpolation, splines, and shape-preserving cubic splines, each with flat
extrapolation. Both interpolation methods produce an implied volatility curve
that is similar.
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Figure 5. Linear and Splines Interpolation of Implied Volatilities

Figure 5a shows a close up of Figure 5, around a strike of 480. It is clear
that the interpolation methods are not producing the exactly the same fitted
volatilities.
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The call prices from these two curves appear in Figure 6. Similar to

Figure 5a. Close up of Figure 5 Around K = $480

2, the call prices are very close.
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Figure 6. Call Prices from Interpolated Volatilities

Figure 6 is misleading, however, since the risk neutral densities extracted from
these call prices are vastly different. This is illustrated in Figure 7, in which the
RNDs have been floored at -0.01 and capped at 0.03 to make the figure more

presentable.
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Figure 7. RNDs recovered from Interpolated Implied Volatilities

Figure 7 indicates that the RND from an implied volatility curve that is
constructed by linear interpolation behaves erratically, and takes on negative
values. The results of the previous section confirm that this is a poor choice of
a volatility function because it leads to arbitrage.
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